
SuperLU: Sparse Direct Solver and
Preconditioner

X. Sherry Li	

xsli@lbl.gov	

http://crd.lbl.gov/~xiaoye/SuperLU	

	

Argonne Training Program on Extreme-Scale Computing
(ATPESC)	

August 8, 2014	

	

SuperLU tutorial 2

Acknowledgements

 Supports from DOE, NSF, DARPA	

  FASTMath (Frameworks, Algorithms and Scalable Technologies for

Mathematics)	

  TOPS (Towards Optimal Petascale Simulations)	

  CEMM (Center for Extended MHD Modeling)	

 Developers and contributors	

  Sherry Li, LBNL	

  James Demmel, UC Berkeley	

  John Gilbert, UC Santa Barbara	

  Laura Grigori, INRIA, France	

  Meiyue Shao, Umeå University, Sweden	

  Pietro Cicotti, UC San Diego	

  Piyush Sao, Gerogia Tech	

  Daniel Schreiber, UIUC	

  Yu Wang, U. North Carolina, Charlotte	

  Ichitaro Yamazaki, LBNL	

  Eric Zhang, Albany High School	

	

SuperLU tutorial 3

Quick installation

 Download site http://crd.lbl.gov/~xiaoye/SuperLU	

  Users’ Guide, HTML code documentation	

 Gunzip, untar	

 Follow README at top level directory	

  Edit make.inc for your platform (compilers, optimizations, libraries, ...)	

 (may move to autoconf in the future)	

  Link with a fast BLAS library	

•  The one under CBLAS/ is functional, but not optimized	

•  Vendor, GotoBLAS, ATLAS, … 	

SuperLU tutorial 4

Outline of Tutorial

 Functionality	

 Sparse matrix data structure, distribution, and user interface	

 Background of the algorithms	

  Differences between sequential and parallel solvers	

 Examples, Fortran 90 interface	

 Hands on exercises	

Solve sparse Ax=b : lots of zeros in matrix

"   fluid dynamics, structural mechanics, chemical process simulation,
circuit simulation, electromagnetic fields, magneto-hydrodynamics,
seismic-imaging, economic modeling, optimization, data analysis,
statistics, . . .

"   Example: A of dimension 106, 10~100 nonzeros per row
"   Matlab: > spy(A)

5

Mallya/lhr01 (chemical eng.) Boeing/msc00726 (structural eng.)

SuperLU tutorial

Strategies of sparse linear solvers

6

 Solving a system of linear equations Ax = b	

•  Sparse: many zeros in A; worth special treatment	

 Iterative methods: (e.g., Krylov, multigrid, …)	

  A is not changed (read-only)	

  Key kernel: sparse matrix-vector multiply	

•  Easier to optimize and parallelize	

  Low algorithmic complexity, but may not converge	

 Direct methods	

  A is modified (factorized)	

•  Harder to optimize and parallelize	

  Numerically robust, but higher algorithmic complexity	

 Often use direct method to precondition iterative method	

  Solve an easy system: M-1Ax = M-1b	

SuperLU tutorial

Available direct solvers

 Survey of different types of factorization codes	

	

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf	

  LLT (s.p.d.) 	

  LDLT (symmetric indefinite) 	

  LU (nonsymmetric)	

  QR (least squares)	

  Sequential, shared-memory (multicore), distributed-memory, out-of-

core	

  GPU, FPGA become active.	

 Distributed-memory codes: usually MPI-based	

  SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]	

•  accessible from PETSc, Trilinos, . . .	

  MUMPS, PasTiX, WSMP, . . .	

7

SuperLU tutorial 8

SuperLU Functionality

 LU decomposition, triangular solution	

 Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)	

 Transposed system, multiple RHS	

 Sparsity-preserving ordering	

  Minimum degree ordering applied to ATA or AT+A [MMD, Liu `85] 	

  ‘Nested-dissection’ applied to ATA or AT+A [(Par)Metis, (PT)-Scotch]	

 User-controllable pivoting	

  Pre-assigned row and/or column permutations	

  Partial pivoting with threshold	

 Equilibration: 	

 Condition number estimation	

 Iterative refinement	

 Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]	

cr ADD

SuperLU tutorial 9

Software Status

  Fortran interfaces	

  SuperLU_MT similar to SuperLU both numerically and in usage	

SuperLU	

 SuperLU_MT	

 SuperLU_DIST	

Platform	

 Serial	

 SMP, multicore	

 Distributed	

memory	

Language	

 C	

 C + Pthreads	

or OpenMP	

C + MPI +
OpenMP +
CUDA	

Data type	

 Real/complex,	

Single/double	

Real/complex,	

Single/double	

Real/complex,	

Double	

Data structure	

 CCS / CRS	

 CCS / CRS	

 Distributed CRS	

	

SuperLU tutorial 10

Usage of SuperLU

 Industry	

  Cray Scientific Libraries	

  FEMLAB	

  HP Mathematical Library	

  IMSL Numerical Library	

  NAG	

  Sun Performance Library	

  Python (NumPy, SciPy)	

 Research	

  In FASTMath Tools: Hypre, PETSc, Trilinos, …	

  M3D-C1, NIMROD (burning plasmas for fusion energys)	

  Omega3P (accelerator design)	

  . . .	

SuperLU tutorial 11

Data structure: Compressed Row Storage (CRS)

 Store nonzeros row by row contiguously	

 Example: N = 7, NNZ = 19	

 3 arrays:	

  Storage: NNZ reals, NNZ+N+1 integers	

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

nzval 1 a 2 b c d 3 e 4 f 5 g h i 6 j k l 7

 colind 1 4 2 5 1 2 3 2 4 5 5 7 4 5 6 7 3 5 7

rowptr 1 3 5 8 11 13 17 20

1 3 5 8 11 13 17 20

Many other data structures: “Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods”, R. Barrett et al.	

SuperLU tutorial 12

User interface – distribute input matrices

  Matrices involved:	

  A, B (turned into X) – input, users manipulate them	

  L, U – output, users do not need to see them	

  A (sparse) and B (dense) are distributed by block rows	

	

 	

 	

 	

 	

 	

	

	

 	

 	

 	

 	

 	

Local A stored in	

	

 	

 	

 	

 	

 	

Compressed Row Format	

	

  Natural for users, and consistent with other popular packages: e.g.
PETSc	

A	

 B	

x x x x

x x x

x x x

x x x

P0

P1

P2

SuperLU tutorial 13

Distributed input interface

 Each process has a structure to store local part of A 	

	

Distributed Compressed Row Storage	

	

	

	

	

 typedef struct {	

	

 int_t nnz_loc; // number of nonzeros in the local submatrix	

	

 int_t m_loc; // number of rows local to this processor	

	

 int_t fst_row; // global index of the first row	

 void *nzval; // pointer to array of nonzero values, packed by row	

	

 int_t *colind; // pointer to array of column indices of the nonzeros	

	

 int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]	

	

} NRformat_loc;	

	

SuperLU tutorial 14

Distributed Compressed Row Storage

  Processor P0 data structure:	

  nnz_loc = 5	

  m_loc = 2	

  fst_row = 0 // 0-based indexing 	

  nzval = { s, u, u, l, u }	

  colind = { 0, 2, 4, 0, 1 }	

  rowptr = { 0, 3, 5 }	

  Processor P1 data structure:	

  nnz_loc = 7	

  m_loc = 3	

  fst_row = 2 // 0-based indexing	

  nzval = { l, p, e, u, l, l, r }	

  colind = { 1, 2, 3, 4, 0, 1, 4 }	

  rowptr = { 0, 2, 4, 7 }	

u	

s	

 u	

 u	

l	

p	

e	

l	

 l	

 r	

P0	

P1	

l	

A is distributed on 2 processors:	

u	

SuperLU tutorial

	

 2D block cyclic layout	

	

15

Internal : distributed L & U factored matrices

0	

 2	

3	

 4	

1	

 5	

Process mesh	

2	

3	

 4	

1	

5	

0	

 2	

3	

 4	

1	

5	

0	

2	

3	

 4	

1	

5	

0	

2	

3	

 4	

1	

5	

0	

2	

1	

0	

2	

3	

 4	

1	

5	

0	

2	

3	

 4	

1	

5	

0	

2	

1	

0	

3	

0	

3	

0	

3	

0	

0	

Matrix	

ACTIVE	

SuperLU tutorial 16

Process grid and MPI communicator

 Example: Solving a preconditioned linear system 	

	

	

 M-1A x = M-1 b	

 	

 M = diag(A11, A22, A33)	

	

	

à use SuperLU_DIST for	

	

 each diagonal block	

	

	

 Create 3 process grids, same logical ranks (0:3),	

	

but different physical ranks	

 Each grid has its own MPI communicator	

A22

A33

A11 0 1
2 3

4 5
6 7

8 9
10 11

SuperLU tutorial 17

Two ways to create a process grid

 superlu_gridinit(MPI_Comm Bcomm, int nprow, 	

	

 	

 	

 	

int npcol, gridinfo_t *grid);	

  Maps the first {nprow, npcol} processes in the MPI communicator

Bcomm to SuperLU 2D grid	

 superlu_gridmap(MPI_Comm Bcomm, int nprow, 	

	

 int npcol, int usermap[], int ldumap, gridinfo_t *grid);	

  Maps an arbitrary set of {nprow, npcol } processes in the MPI

communicator Bcomm to SuperLU 2D grid. The ranks of the selected
MPI processes are given in usermap[] array. 	

	

For example:	

11	

 12	

 13	

14	

 15	

 16	

0 1 2
0

1

SuperLU tutorial 18

Review of Gaussian Elimination (GE)

  Solving a system of linear equations Ax = b	

  First step of GE: (make sure not too small . . . Otherwise do pivoting)	

  Repeats GE on C	

  Results in {L\U} decomposition (A = LU)	

  L lower triangular with unit diagonal, U upper triangular	

  Then, x is obtained by solving two triangular systems with L and U	

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

C
w

IvBv
wA

TT

0/
01 α

α
α

α

TwvBC ⋅
−=

α

Sparse factorization
"   Store A explicitly … many sparse compressed formats
"   “Fill-in” . . . new nonzeros in L & U

"   Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems
"   Graph algorithms: directed/undirected graphs, bipartite graphs,

paths, elimination trees, depth-first search, heuristics for NP-hard
problems, cliques, graph partitioning, . . .

"   Unfriendly to high performance, parallel computing
"   Irregular memory access, indirect addressing, strong task/data

dependency

19

1
2

3
4

6
7

5 L

U
1

6

9

3

7 8

4 5 2 1

9

3 2

4
5

6 7
8

20

Graph tool: reachable set, fill-path

Edge (x,y) exists in filled graph G+ due to the path: x  7  3  9  y

"   Finding fill-ins  finding transitive closure of G(A)

+

+

+

y

+

+

+

+

3

7

9

x

o

o o

Algorithmic phases in sparse GE

1.  Minimize number of fill-ins, maximize parallelism (~10% time)
"   Sparsity structure of L & U depends on that of A, which can be changed by

row/column permutations (vertex re-labeling of the underlying graph)
"   Ordering (combinatorial algorithms; “NP-complete” to find optimum

[Yannakis ’83]; use heuristics)

2.  Predict the fill-in positions in L & U (~10% time)
"   Symbolic factorization (combinatorial algorithms)

3.  Design efficient data structure for storage and quick retrieval of the
nonzeros
"   Compressed storage schemes

4.  Perform factorization and triangular solutions (~80% time)
"   Numerical algorithms (F.P. operations only on nonzeros)
"   Usually dominate the total runtime

"   For sparse Cholesky and QR, the steps can be separate;
 for sparse LU with pivoting, steps 2 and 4 my be interleaved.

21

SuperLU tutorial

General Sparse Solver

 Use (blocked) CRS or CCS, and any ordering method	

  Leave room for fill-ins ! (symbolic factorization)	

 Exploit “supernode” (dense) structures in the factors	

  Can use Level 3 BLAS	

  Reduce inefficient indirect addressing (scatter/gather)	

  Reduce graph traversal time using a coarser graph	

22	

SuperLU tutorial 23

Numerical Pivoting

  Goal of pivoting is to control element growth in L & U for stability	

  For sparse factorizations, often relax the pivoting rule to trade with better

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)	

  Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP) 	

  Can force diagonal pivoting (controlled by diagonal	

	

threshold)	

  Hard to implement scalably for sparse factorization	

  Static pivoting used in SuperLU_DIST (GESP)	

  Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’	

  During factor A’ = LU, replace tiny pivots by , without changing data

structures for L & U	

  If needed, use a few steps of iterative refinement after the first solution	

  quite stable in practice	

Aε

b

s x x

x x x

x

SuperLU tutorial 24

Ordering : Minimum Degree

Local greedy: minimize upper bound on fill-in	

Eliminate 1	

 1

i

j

k

Eliminate 1	

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

x

x

x

x

xxxxx
i j k l	

1	

i	

j	

k	

l	

 ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

••••

••••

••••

••••

x

x

x

x

xxxxx
i j k l	

1	

i	

j	

k	

l	

l

i

k

j

l

SuperLU tutorial 25

Ordering : Nested Dissection

 Model problem: discretized system Ax = b from certain PDEs,
e.g., 5-point stencil on n x n grid, N = n2	

  Factorization flops: O(n3) = O(N3/2)	

 Theorem: ND ordering gives optimal complexity in exact
arithmetic [George ’73, Hoffman/Martin/Rose]	

SuperLU tutorial 26

ND Ordering

 Generalized nested dissection [Lipton/Rose/Tarjan ’79]	

  Global graph partitioning: top-down, divide-and-conqure 	

	

  Best for largest problems	

  Parallel codes available: ParMetis, PT-Scotch	

  First level	

  Recurse on A and B	

 Goal: find the smallest possible separator S at each level	

  Multilevel schemes: 	

•  Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]	

  Spectral bisection [Simon et al. `90-`95]	

  Geometric and spectral bisection [Chan/Gilbert/Teng `94]	

A B S
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Sxx
xB
xA

0
0

SuperLU tutorial 27

ND Ordering

2D mesh 	

 A, with row-wise ordering	

A, with ND ordering	

 L &U factors	

SuperLU tutorial 28

Ordering for LU (unsymmetric)

  Can use a symmetric ordering on a symmetrized matrix	

•  Case of partial pivoting (serial SuperLU, SuperLU_MT):	

	

 	

Use ordering based on AT*A	

•  Case of static pivoting (SuperLU_DIST): 	

	

 	

Use ordering based on AT+A	

	

  Can find better ordering based solely on A, without
symmetrization 	

•  Diagonal Markowitz [Amestoy/Li/Ng `06]	

•  Similar to minimum degree, but without symmetrization	

•  Hypergraph partition [Boman, Grigori, et al. `08]	

•  Similar to ND on ATA, but no need to compute ATA	

SuperLU tutorial 29

Ordering Interface in SuperLU

 Library contains the following routines:	

  Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]	

  Utility routines: form AT+A , ATA 	

 Users may input any other permutation vector (e.g., using
Metis, Chaco, etc.)	

 . . .	

 set_default_options_dist (&options);	

 options.ColPerm = MY_PERMC; // modify default option	

 ScalePermstructInit (m, n, &ScalePermstruct);	

 METIS (. . . , &ScalePermstruct.perm_c);	

 . . .	

 pdgssvx (&options, . . . , &ScalePermstruct, . . .);	

 . . .	

SuperLU tutorial 30

Symbolic Factorization

 Cholesky [George/Liu `81 book]	

  Use elimination graph of L and its transitive reduction (elimination tree)	

  Complexity linear in output: O(nnz(L))	

 LU	

  Use elimination graphs of L & U and their transitive reductions

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]	

  Improved by symmetric structure pruning [Eisenstat/Liu `92]	

  Improved by supernodes	

  Complexity greater than nnz(L+U), but much smaller than flops(LU)	

SuperLU tutorial 31

Numerical Factorization

 Sequential SuperLU	

  Enhance data reuse in memory hierarchy by calling Level 3 BLAS on

the supernodes	

 SuperLU_MT	

  Exploit both coarse and fine grain parallelism	

  Employ dynamic scheduling to minimize parallel runtime	

 SuperLU_DIST	

  Enhance scalability by static pivoting and 2D matrix distribution	

SuperLU tutorial
32

SuperLU_MT [Li/Demmel/Gilbert]

 Pthread or OpenMP	

 Left-looking – relatively more READs than WRITEs	

 Use shared task queue to schedule ready columns in the

elimination tree (bottom up)	

 Over 12x speedup on conventional 16-CPU SMPs (1999)	

P1 P2	

DONE	

 NOT	

TOUCHED	

WORKING	

U	

L	

A	

P1	

P2	

DONE	

 WORKING	

SuperLU tutorial

 MPI	

 Right-looking – relatively more WRITEs than READs	

 2D block cyclic layout	

 Look-ahead to overlap comm. & comp.	

 Scales to 1000s processors	

33

SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]

0	

 2	

3	

 4	

1	

 5	

Process mesh	

2	

3 4	

1

5	

0 2	

3 4	

1

5	

0

2	

3 4	

1
5	

0

2	

3 4	

1
5	

0

2	

10

2	

3 4	

1
5	

0

2	

3 4	

1

5	

0

2	

10

3	

0	

3
0	

3

0

0	

Matrix	

ACTIVE	

SuperLU tutorial

Multicore platforms

 Intel Clovertown: 	

 2.33 GHz Xeon, 9.3 Gflops/core	

 2 sockets x 4 cores/socket	

 L2 cache: 4 MB/2 cores	

 Sun VictoriaFalls: 	

 1.4 GHz UltraSparc T2, 1.4 Gflops/core	

 2 sockets x 8 cores/socket x 8 hardware threads/core	

 L2 cache shared: 4 MB	

34

SuperLU tutorial

Benchmark matrices

apps dim nnz(A) SLU_MT
Fill

SLU_DIST
Fill

Avg.
S-node

g7jac200 Economic
model

59,310 0.7 M 33.7 M 33.7 M 1.9

stomach 3D finite
diff.

213,360 3.0 M 136.8 M 137.4 M 4.0

torso3 3D finite
diff.

259,156 4.4 M 784.7 M 785.0 M 3.1

twotone Nonlinear
analog
circuit

120,750 1.2 M 11.4 M 11.4 M 2.3

35

SuperLU tutorial

Intel Clovertown

 Maximum speedup 4.3, smaller than conventional SMP	

 Pthreads scale better	

 Question: tools to analyze resource contention?	

36

SuperLU tutorial

SunVictoriaFalls – multicore + multithread

  Maximum speedup 20
  Pthreads more robust, scale better
  MPICH crashes with large #tasks,

mismatch between coarse and
fine grain models

SuperLU_MT	

 SuperLU_DIST	

37	

SuperLU tutorial 38

Performance of larger matrices

  Sparsity ordering: MeTis applied to structure of A’+A	

Name Application Data
type

N |A| / N
Sparsity

|L\U|
(10^6)

Fill-ratio

matrix211 Fusion,
MHD eqns
(M3D-C1)

Real 801,378 161 1276.0 9.9

cc_linear2

Fusion,
MHD eqns
(NIMROD)

Complex 259,203 109 199.7 7.1

matick Circuit sim.
MNA method
(IBM)

Complex 16,019 4005 64.3 1.0

cage13 DNA
electrophoresis

Real 445,315 17 4550.9 608.5

SuperLU tutorial 39

Strong scaling (fixed size): Cray XE6 (hopper@nersc)

  Up to 1.4 Tflops factorization rate	

  2 x 12-core AMD 'MagnyCours’ per node, 2.1 GHz processor	

SuperLU_DIST 3.0: better DAG scheduling

"   Implemented new static scheduling and flexible look-ahead algorithms that
shortened the length of the critical path.

"   Idle time was significantly reduced (speedup up to 2.6x)
"   To further improve performance:

"   more sophisticated scheduling schemes
"   hybrid programming paradigms

40

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

8 32 128 512 2048
0

5

10

15

20

25

30

35

40

45

50

Number of cores

F
a

ct
o

ri
za

tio
n

/C
o

m
m

u
n

ic
a

tio
n

 t
im

e
 (

s)

version 2.5
version 3.0

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a

ct
o

ri
za

tio
n

/C
o

m
m

u
n

ic
a

tio
n

 t
im

e
 (

s)

version 2.5
version 3.0

Accelerator, n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609

Multicore / GPU-Aware

"   New hybrid programming code: MPI+OpenMP+CUDA, able to use
all the CPUs and GPUs on manycore computers.

"   Algorithmic changes:
"   Aggregate small BLAS operations into larger ones.
"   CPU multithreading Scatter/Gather operations.
"   Hide long-latency operations.

"   Results: using 100 nodes GPU clusters, up to 2.7x faster, 2x-5x
memory saving.

"   New SuperLU_DIST 4.0 release, August 2014.

41

CPU + GPU algorithm

42






  

①  Aggregate small blocks 	

②  GEMM of large blocks	

③  Scatter 	

GPU acceleration: 	

Software pipelining to
overlap GPU execution
with CPU Scatter, data
transfer. 	

SuperLU tutorial

ILU Interface

 Available in serial SuperLU 4.0, June 2009	

 Similar to ILUTP [Saad]: “T” = threshold, “P” = pivoting

  among the most sophisticated, more robust than structure-
based dropping (e.g., level-of-fill)	

 ILU driver: SRC/dgsisx.c	

	

ILU factorization routine: SRC/dgsitrf.c	

	

GMRES driver: EXAMPLE/ditersol.c	

 Parameters:	

  ilu_set_default_options (&options)	

•  options.ILU_DropTol – numerical threshold (τ)	

•  options.ILU_FillFactor – bound on the fill-ratio (γ)

43

SuperLU tutorial

Result of Supernodal ILU (S-ILU)

 New dropping rules S-ILU(τ, γ)
  supernode-based thresholding (τ)
  adaptive strategy to meet user-desired

 fill-ratio upper bound (γ)

 Performance of S-ILU
  For 232 test matrices, S-ILU + GMRES converges with 138

cases (~60% success rate)
  S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES

i	

SuperLU tutorial

S-ILU for extended MHD (fusion energy sim.)

 AMD Opteron 2.4 GHz (Cray XT5)
  ILU parameters: τ = 10-4, Υ = 10
 Up to 9x smaller fill ratio, and 10x faster

Problems order Nonzeros
(millions)

SuperLU
Time fill-ratio

S-ILU
time fill-ratio

GMRES
Time Iters

matrix31 17,298 2.7 m 33.3 13.1 8.2 2.7 0.6 9

matrix41 30,258 4.7 m 111.1 17.5 18.6 2.9 1.4 11

matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20

matrix121 263,538 42.5 m x x 145.2 1.7 47.8 45

matrix181 589,698 95.2 m x x 415.0 1.7 716.0 289

SuperLU tutorial 46

Tips for Debugging Performance

 Check sparsity ordering	

 Diagonal pivoting is preferable	

  E.g., matrix is diagonally dominant, . . .	

 Need good BLAS library (vendor, ATLAS, GOTO, . . .)	

  May need adjust block size for each architecture	

	

(Parameters modifiable in routine sp_ienv())	

•  Larger blocks better for uniprocessor	

•  Smaller blocks better for parallellism and load balance	

  Open problem: automatic tuning for block size?	

SuperLU tutorial 47

Summary

 Sparse LU, ILU are important kernels for science and engineering
applications, used in practice on a regular basis	

 Performance more sensitive to latency than dense case	

  Continuing developments funded by DOE SciDAC projects	

  Integrate into more applications 	

  Hybrid model of parallelism for multicore/vector nodes, differentiate

intra-node and inter-node parallelism	

  Hybrid programming models, hybrid algorithms	

  Parallel HSS precondtioners	

  Parallel hybrid direct-iterative solver based on domain decomposition	

	

SuperLU tutorial

Exercises of SuperLU_DIST

48

 https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2014/Exercises/superlu/README.html	

 On vesta:	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu	

	

	

 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html	

	

SuperLU tutorial 49

Examples in EXAMPLE/

 pddrive.c: Solve one linear system	

 pddrive1.c: Solve the systems with same A but different right-

hand side at different times	

  Reuse the factored form of A	

 pddrive2.c: Solve the systems with the same pattern as A	

  Reuse the sparsity ordering	

 pddrive3.c: Solve the systems with the same sparsity pattern
and similar values	

  Reuse the sparsity ordering and symbolic factorization	

 pddrive4.c: Divide the processes into two subgroups (two
grids) such that each subgroup solves a linear system
independently from the other.	

SuperLU tutorial 50

SuperLU_DIST Example Program

  EXAMPLE/pddrive.c	

  Five basic steps	

1.  Initialize the MPI environment and SuperLU process grid	

2.  Set up the input matrices A and B	

3.  Set the options argument (can modify the default)	

4.  Call SuperLU routine PDGSSVX	

5.  Release the process grid, deallocate memory, and terminate the MPI

environment	

SuperLU tutorial 51

Fortran 90 Interface in FORTRAN/

 All SuperLU objects (e.g., LU structure) are opaque for F90	

  They are allocated, deallocated and operated in the C side and not

directly accessible from Fortran side.	

 C objects are accessed via handles that exist in Fortran’s user

space	

 In Fortran, all handles are of type INTEGER	

 Example: FORTRAN/f_5x5.f90	

0.12,0.18,0.5,0.16,0.21,0.19 , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A

SuperLU tutorial

Exercises of SuperLU_DIST

52

 https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2014/Exercises/superlu/README.html	

 On vesta:	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu	

	

	

 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html	

	

SuperLU tutorial 53

Examples in EXAMPLE/

 pddrive.c: Solve one linear system	

 pddrive1.c: Solve the systems with same A but different right-

hand side at different times	

  Reuse the factored form of A	

 pddrive2.c: Solve the systems with the same pattern as A	

  Reuse the sparsity ordering	

 pddrive3.c: Solve the systems with the same sparsity pattern
and similar values	

  Reuse the sparsity ordering and symbolic factorization	

 pddrive4.c: Divide the processes into two subgroups (two
grids) such that each subgroup solves a linear system
independently from the other.	

SuperLU tutorial 54

SuperLU_DIST Example Program

  EXAMPLE/pddrive.c	

  Five basic steps	

1.  Initialize the MPI environment and SuperLU process grid	

2.  Set up the input matrices A and B	

3.  Set the options argument (can modify the default)	

4.  Call SuperLU routine PDGSSVX	

5.  Release the process grid, deallocate memory, and terminate the MPI

environment	

SuperLU tutorial 55

Fortran 90 Interface in FORTRAN/

 All SuperLU objects (e.g., LU structure) are opaque for F90	

  They are allocated, deallocated and operated in the C side and not

directly accessible from Fortran side.	

 C objects are accessed via handles that exist in Fortran’s user

space	

 In Fortran, all handles are of type INTEGER	

 Example: FORTRAN/f_5x5.f90	

0.12,0.18,0.5,0.16,0.21,0.19 , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A

